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e What are WGM resonators

Whispering Gallery Modes are electromagnetic
resonances that occur in circularly symmetric dielectrics,
and trap light in a circling orbit via total internal reflection

* They can be produced in a variety of shapes

e They can be produced in a variety of sizes (10’s of mm to
pm)

« They can be fabricated from a variety of materials

« They can be made with various fabrication processes

OEwaves Confidential 5



a Features of WGM Resonators

OEwaves

« Ultra-high Q allows long optical delays (ns to ms range)
o Ultra-narrow spectral linewidth makes them ideal filters

— Photonic microwave filters with microwave signals carried as
sidebands on an optical carrier --- any microwave frequency can
be supported

— Multi-resonator structures with high rejection band (~ 100 dB)

— Optical filters for signal processing, spectroscopy, laser
stabilization, ...

» Resonators made using materials with electooptic effect can lead to
— Tunable filters (optical and microwave) with > 40 GHz tunablity
— Highly efficient modulators
— Optical memory using photorefractivity
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@ Applications

OEwaves

e Linear regime
— Cavity QED
— “Artificial” atoms and molecules
— Spectroscopy and materials studies
— Filters (fixed and tunable; microwave and optical)
— Modulators
— Delays
— Slow light (multi-resonator structures)
* Nonlinear regime

— Lasers (including Raman lasers) and THz sources
— OPO
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* Fundamentals of crystalline WGM resonators




@ Whispering Gallery Modes for Spherical

S Resonators
P Whispering Gallery Modes are
X E)+ £ E _ 0 electromagnetic resonances which occur in circularly
Vx(VxE)+—— agne _ _
c” a symmetric dielectrics. These resonators trap light

in a circling orbit via total
V24 k2.5 internal reflection .
(V°+k%)-e=0 The WGM usually is characterized by mode
Numbers n, I, and m
e= 2[R (NY"(0,¢)+~ V X (Rpy (NY,"(6,))] s the radial mode number
Is the angular mode number
IR
a’

+[KPe— |(|+1)]R 0 m is the azimuthal mode number

Ji2(Kr) s the solution

1/3 2 1/3
3
quzi I+aq(lj S aq(gj + ...
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@ Crystalline WGM resonator

OEwaves

Extremely high Q (> 10X has been demonstrated at JPL, finesse>10")
— Long delays (micro seconds)
— Narrow optical/phtonic filters
— Reference resonator for laser stabilization

Small mode volumes for exploring nonlinear effects
— Second harmonic generation with great efficiency
— Efficient parametric processes (four-wave mixing, up/down conversion)
— Entangled photon source
Crystalline material with electooptic effects
— Frequency tunability
— Highly efficient modulators
— Optical memory using photorefractivity

Support wide wavelength range (from THz to UV)
— Unique feature, very different from FP cavity

Small sizes: ranging from 10’s of micron to a few mm
— Compact
— Easier for mechanical and thermal stabilization
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@ Types of Whispering Gallery Mode
OEwaves R eSO n atO rS

Crystalline disk Q~3ex10!! Fused silica microtoroid g~1 x 108 Silicon microdisk, Q~5 x 10°

L. Maleki et al, Physical Review A K. Vahala et al., Nature, vol 421, 27 O.Painter et al. App. Phys.Let.
February 2003 p. 925. Vol 85 No 17, 25 October 2004

70, 051804(R) 2004.

Solid H2, Q>10” ilica microsphere
Micro-ring resonators. S - F;
Toroidal resonator fabricated by ) ; K.Hakuta et al. Q=8x10
placing a melting sphere between Q ~ 10" to 10°. Opt.Lett.,27 No 6
two fibers R< 100 um March 15 2002
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@ New crystalline ultra-high Q microcavities

OEwaves

i -
- b=t

- G

http://www.aber.ac.uk/
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@ Non-spherical Structures

OEwaves

Toroidal Resonators

o Disk Resonators
Elliptical Resonators

“Rim” Resonators
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@ Coupling Schemes

OEwaves

Angled Fiber

For a resonator with
Index n surrounded by
air, the evanescent height,

Microsphere

Fiber

@ Reflecting

surface normal

Prism Coupling

Mechanical Pull Clamped End
SMF28
. —
Hydrogen Flame
] T . n
Fiber taper Ormpur =~ —arcsin —=
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@ Coupling with Low Insertion Loss

OEwaves

16.52 MHz

With prism coupling and elliptical resonator
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@ Optical Loss Mechanisms

OEwaves

e | Inear LoOSS
— Radlatlve aradiative — Ae_l
o . Q . __2d
— Intrinsic material loss:  ~<meriad =, 4

mateial
2
— Surface loss: Q.= A 58 , o and B are surface
o

Inhmogeneity parameters.
Q™" = Qg + Qirtace + Qateria
e Nonlinear Loss
— SRS, FWM, Parametric processes
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@ Calculated values for achievable Q’s

OEwaves

For crystalline 10* _—
resonators, linewidth is 10 ,// :\
ultimately determined by P _— Silics CaF, \\
the material absorption ~ 10% /‘ \
o — 1011 ~ \ \,
8.l T \\
= -1
27" =ny(ac) "g,lolo \\ ALO,
27N 10° s~
= Q=—-+ \\
al 1 —/ \
LINDO, \
107 L 1

1000 2000 3000 4000 5000
Wavelength, nm

Avv /A —4 —Arr/A
For a~apy e'"V'*+ar A" +argr e
vv R IK E.D.Palik, “Handbook on optical

constants of solids”, Academic, NY, 1998
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Transmission
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@ Response of the CaF2 resonator above the threshold
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Record Q

5

<

3002
qué ©.000|
26! 5.004-‘ -
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W4t Time (ms)
= o
B3]
@ 1 ¢=130.10ps
0.2+ 12:55013(X) LS O
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Equivalent Q ~ 3 x 10%; Af =660 Hz!
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Measured Qs

775nm 1064nm 1319nm 1550nm
a-Al, O, 8x107 1.5x10°
Quartz 5x10°
SLN 7x107 8x107 2x108 6x108
SLT 7x107 2x108 2x10°
Fused Silica 8x10°
MgF, >1010
CaF, >6x1010 >6x1010 | >4x10%° 3x101!

PEwaves Confidential




@ Important Resonator Parameters

V\
Cavity f'9|d build-up Small size and optical
factor and linewidth energy density

OEwaves

E.g.V=nx1 mm x100 um x10 um

Figure of merit for nonlinear processes:

Purcell’s factor: n=1 SRS and FWM: n=2  Frequency doubling: n=3

[V.S. lichenko et al.,
JOSA B 20, 1304 (2003)]
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e Spectrum engineering
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Frequency spectrum and mode
volume can be engineered by
design of the resonator profile

200pm EHT =10.00 KV Signal A = SE2 Date ;14 Jun 2005
Mag= 150X I WwWD= Smm Photo Mo. =9 Time :12:18:32

N

EHT = 10.00 kV Signal A=SE2  Date :14 Jun 2005

20pm 1 EHT = 10.00 kV Signal A = SE2 Date :14 Jun 2005
Mag= 125K X i—i WD = 10 mm Photo No. =6 Time :12:05:30 Mag = 20.00 K X |L| WD= 10mm Photo No, = 8 Time :12:14:25

T 32 Z°09090909090 . -etaw LalEEe= TR E_——————————— === ==
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Single mode WGM resonators




More on single mode WGM resonators:
=" true single mode spectrum

Relative optical power, dB

-3[] _ 1 ] 1 ] 1 ] 1 1
0 5 10 15 20 25 30
Frequency, GHz
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White light WGM resonators
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Normalized output power

'a Novel configuration of whispering
DEWM gallery mode resonators

STM picture of a
single mode
resonator being
a “rim” over a
multimode wave

guide
2L (z
5:50£1+ ( )j
] O
OF (a)
fi } ‘ { (a) After
o = diamond
[ turning
_ (b) After proper
o0 10 20 30 40 tune'up

Frequency detuning, GHz
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Delay line with coupled resonators

OEwaves

o
o
=
3
Tms
(a) (b) B
—— and structure
N 6
I 12p V >0 7
L ,ﬁ 81 {\_,/
Field e nal Nt
— iy 0
distribution (é;?’ﬁ; o 3t ) A/
: 2__ Frequency detuning, GHz
1k
D ' | ' 1 L 1 L | ' | ' |
N~ 0 2 4 6 8 10 12

px107, cm”
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o Slow light devices
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@ Coupled resonator systems

“Slow light” and SCISSOR solitons
J. Heebner and R. Boyd, JOSA B 19, 722 (2002) and
J. Mod.Opt. 49, 2629 (2002).

Coupled cavities for enhancing cross-phase
modulation in EIT

T. Opatrny and D. Welch, Phys. Rev. A 64, 023805 (2001)

 Sharp asymmetric line shapes in side coupled
waveguide-cavity systems

S. Fan, Appl. Phys. Lett. 80, 908 (2002).

o Storing light all optically

M. Yanik and S. Fan, quant-ph/0312027 (2003).
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@ An analogy with EIT in guantum systems:

OEwaves -
Interference of decays
decay —
D detietie —
"4
| «s £
E —_—
o 10 1.0}
E 0.8 8
.é 0.6 *§_
g 0.4} 80_5
g 02 <
= o0l
3 2 4 0 1 2 3 0.0 oy
L.Maleki et al., Opt. Lett. Frequency detuning, (w-am,)/2y, Probe frequency

29, 626 (2004
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a EIT” in a system of two coupled
OBviave: resonators

1.0
= The width of the transparency
—_— 08_
= resonance (2) depends on the
-% 0.6r resonators’ frequencies
€ 04}
< 4
@ 02 F 7/7/C a) COZ
E TE = ool J

I Bk B B 4y (o, — w,)

Frequency detuning, (c-cw,)/2y,
(a)l_a)z) 2 47/7c

T — [y +ilw -]y +i(w-,)]
. . iy 2
2y, +y +ilo-a)]2y, +7 +ilo-w,)|- 46"y
2 4
w, —
T1 = T3 = %’ T = ( 2) . 7. Is the linewidth due to loading
of the resonators
Ve [47/7/c a)l_a)Z) ]2
o). + o Y Is the linewidth due to
o, =—F= absorption of the material
L 2 G626 OFTICS LETTERS J Vol 20, Mo, 6§ / March 15, 2004

OEwaves Confidential 34




Outline

e Filters
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e WGM Filters

o WGM filters are a powerful new tool for photonic
processing of RF signals and enable new capabilities

 WGM tunable filters offer wide tunability range with sub-
microsecond tuning speed

e OEwaves has demonstrated single and multi-pole filters
with tunability exceeding 12 GHz; fast tuning speed has
been demonstrated with measurement of waveform
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Okwaves Photonic filters

Microwave signal Filtered
to be filtered Mlcrowave
signal
1 -, \ Photonic D
: : Filter
- - Optical carrier ---»
f f  f+MW f f f+mw
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@ Lithium Niobate Whispering Gallery Mode
e Resonators in optical frequency domain

LINbO;
resonator
coupling
fiber fiber

Photograph of 1 mm size WGM resonator disk  Optical coupling scheme for the disk resonator

Features:

Large quality factor > Q =8x10° at 1 =1550nm
Large electro-optical tuning range: 20 _ 8 _

oty Q =2x10° at 2 =1310nm
Insertion loss: 2-7 dB Q=8x10" at A =1064nm

Small size: 0.1-12 mm

Q=7x10"at A =780nm
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@ Tri-pole tunable filter prototype

OEwaves

Characteristic third order filter function and 12 GHz tuning

3-pole tunable filter .

-10
-20
-30
-40
-50

-60

Fiber-to-fiber transmission, dB

-70

-80

Voltages Voltages
optimized optimized
for mode for mode
overlap overlap
near maximum near zero
100-150V (0-10V)
0
ok
_20:
_30-_
_40-_
_50__
-0}
_70:
80 12500 13000 13500
| L | L | L | L | L | | L |
2 4 6 8 10 12 14 16

Laser frequency detuning, GHz
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@ Tri-pole Filter Data (close-up)
oeaes  FUIl X-band Tuning is Achieved (8-12GHz)

| /\
20 - \\
\
-40 - b, )
i'? it
ol ﬁfl “ 'M “j" »‘ \

9.85 9.90 9.95 10.00 10.05 10.10 10.15




@ Single mode “Vernier”

OEwaves
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,a Tri-Pole Filter Architecture of
AOSP Phase Il

OEwaves
I
LN Resonators
DFB Modulator ””” — RFout
| I I I I
é(l)tﬁt-lr-glr]ing RFin Tuning Control
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Orthogonal Flexture-based Mechanical
o= Design of Six-pole Optical Filter (AOSP)

- Independent mech. trimming of all couplings
- Improved linearity and stability
- Tap coupler/PD at third resonator for alignment
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 Modulators and receivers




<J WGM based EOM

OEwaves

The carrier and sidebands have the same polarization

FP scanning voltage, a.u.

Microwave Resonator First High Performance WGM
Modulator Fabricated With
Lithium Niobate

Laser

PD output after FF

V. S. lichenko, A. A. Savchenkov, A. B. Matsko,
and L. Maleki, JOSA B, 20, 333 (2003).

Generates mostly phase modulated light so
the RF return is relatively low.

Lithium Niobate
Resonator



;a Typical sensitivity achievable in linear
modulator - saturation at -15dBm RF power

OEwa
=
m
©
Sy -60
% network's data
o) —@— saturation curve
S
® -15dBm saturation in LiTaO _o—eo-
g '65 - 3 .,_./. .M““.
<3 4
o I
£ o
= /./
£ 70 ?
)
3 ,/"a
a 1
H v
5 75- ?
O
80 |‘” { ‘ ’ I Wm I .MLMMWM._

-35 -30 -25 -20 -15 -10
Input power, dBm
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@ Characteristics of WGMR Modulators

OEwaves

e Narrow Bandwidth (< 20) MHz
« Low RF Saturation power
« Low optical power handling capability

Ideal for applications such as in oscillators (OEO) and narrow-
band receivers--- BUT

Limited for other applications
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@ WGMR Modulator as a Receiver

OEwaves

Demodulated microwave power, dB

T T
7 8 9 10 11
Microwave frequency, GHz

First High Performance WGM
Modulator Fabricated With
Lithium Niobate

V. S. lichenko, A. A. Savchenkov, A. B. Matsko
and L. Maleki, JOSA B, 20, 333 (2003).

Highly Effective Modulation

) . Empty Base
Using Electro-Optic Effect
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SSB Modulator

0|00 ©
90 ®

o0 |0®

L X A X

/ 1(:5 M

Tunable BRI Sianal
elay Line

[Nspersive
Element

[Laser

—

a0 -

-40 -

Optical Intensity (dBm)

=80 1 1
16517 1651.8 1551.9 1552.0
Wavelength (nm)

Output

1
1852.1 15652.2 15523

Typical suppression of the sidemode is ~ 30 dB
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@ WGM SSB versuEs C;:IC\)/Inventlonal WGM

UUUUUUU M .

Sidebands

AN

Carrier Carrier




WGM Based SSB EOM

OEwaves
RF electrode WGM
resonator
DC
coupling /
prism
collimator collimator
RF

RF
N RF electrode

resonator DCout | |

WGM

coupling

prism slow photodiode

polarization RFout
controller '\
e { ;\ , N fast photodiode
laser collimators  polarization

‘K controller
optical fiber




@ Coupling between TE and TM modes

OEwaves
20 SR 20 - sideband
m . n

e I = il I mamrplzed
g | [ [ pume
= 8 21| | maximized
qg) -40 - & '40
S 17.1 17.2
= - Frequency, GHz
0
[o N
o 60 (a) =0 (b)

1549.2 1549 .4 1549.6 1549.2 1549.4 15649.6

Optical wavelength, nm Optical wavelength, nm
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0.6

S
£ 05
m -
E. 0.4} t= I '|
5 | 17.16 GHz
Q 03} ©

[ N 1 i 1 . 1 N 1 i 1 A 1
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Optical frequency, GHz




@ SSR measurements

OEwaves

Second sideband level determines crosstalk between frequency channels

. . sideband
No second sideband at -70dBc level Optical carrier
-10 \ l/ /
‘ -10
30 | £ 30
© 50 -
5 E o —————
g -50 -110 ‘ : : :
8_ 12440 12540 12640 12740 12840
LL RF frequency, GHz
(ned
_70 ]
-90
SSR is better than -70dBc
‘110 I T T T T T T T
10 12 14 16 18 20 22 24

RF frequency, GHz



@ SSB RF Return and Photonic Loss

OEwaves

. Best RF Return ‘ Lowest Photonic Loss
10 n 10 |ﬂ| Photonic gain -4dB
_ Optical tPD i
: | Fe=12017GHz - \ ereassato sioqmm
£ 10 f PRF-+9dBm “_"th no £ || saturation power
0 [ RF amplification % 20 f | +7dBm
" 20 n
§_ |' H-.I RF input power 2.
5% /) +20dBm 5
Do 40 nJl' rl % 50 W ﬂ )
& 50 }WV I \i Ill | g N ‘ w H l
. e |” ‘.|J1 * ll“ [ \HLJ' 'U[ﬂ ™ ll[| % -60
M, L | T
70 *1 J“ ‘hl i lJ W | ® 7o
B0 -80
60 -50 -40 -30 -20 -10 Q 10 20 30 40 8100 8200 8300 8400 8500 8600 8700
Frequency offset, MHz RF input frequency, MHz

Maximum RF return = +9dBm
It exactly corresponds to SSB equation: Pre=P ., riertPsigenangt G- Where
F)carrier:'l'leBm' I:)sideband:'l']-gdBm

G=-17.4dB

2
G=11 3 RgO0S8 R=55G=-0 4d

54
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SSB Tunabilit
@ Frequency, GHz y

Frequency, GHz

-30 <&—— 475V _— c% \
a) [ E
9‘5 -40 ‘ E. \ No efficiency dips
s -50 ‘ %
: (PR
60 I IR © vty gt e R A
| | M UL LR P o _
1OIHZ 15GHz 14.5
 Wide tunability from -90 to +90V N
(2_186 HZ) (é; 12.5
e Linear tuning S ...
LL
« Efficiency dips < 2dB

\oltage, V
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@ SSB Modulator Characteristics

OEwaves

e Higher RF saturation (but still lower than 10 mW)
 Larger bandwidth (100 MHz to 1 GHz possible)

o Very large RF return (nearly optimal power in
sideband)

» Center frequency widely tunable (1-40 GHz possible)

A new class of optical modulator
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Performance Criteria:

Resonator Q

Photo-detector efficiency and power

Amplifier flicker noise

WGM Based Tunable OEO

Fast Photo-detector

OEwaves Confidential
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Transition to Products
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@ Hyper-parametric oscillations
= based on FWM In a fluorite resonator

Transition diagram Optical spectrum

50/50 D2
A : I > MW
I ’ T signal
@o| ‘f | couh w, O
I requency| coupling—
Q ) S— Ll Iock prism siDC | a)_ 0 +
gnal
FSR | S T
I
C()O I _ Cah resonator
. \
i 10 N 100 —
15 - 20 A.A. Savchenkov et al., <
s ol PRL 93, 243905 (2004) & Optics D
5 0 Express 16, 4130 (2008) g -110 |
8 -25 SO s eer mges  sses e
2 2
g or Currently we have 2
= as| -125 dBc at 100 kHz £ 10r
MWM%NW WMMWMWM and -135 dBc noise floor. IR R TIT ETT |
Iy 855 860 865 10° 10° 10° 10’
Frequency, GHz |:|.equencyl Hz
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Outline

 Novel sources based on nonlinearities
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@ Efficiency of the frequency conversion with a
otwaves \WGM PPLN resonator and spectra of the pump

and signal
=
S
£ |
2 =
& ©111.55 {im transmission
(&) (D)
g S
— o
c
© -
= L/ 75 nm emission
.(j_) ol 1 1 I | 1 1 P T T T A | 1 1 | 1 | 1 | 1 |
1 10 100 O 20 40 60 80
Pump power at the cavity entrance, m\W Frequency, GHz

V. S. llchenko et al., Phys. Rev.
Lett. 92 (4): art. no. 043903 (2004)
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@ Hyperparametric Oscillation

OEwaves

The reverse of the frequency doubling is parametric generation of
photon pairs (sub-threshold) or of squeezed vacuum (above-threshold).

The OPO threshold in our case is

P _ gpgsz Vs za)pvp
"6 (r?) |V, | QQ,

Which can be as low as 1.5 pW.
(The state of the art is 0.5 mW)

OEwaves Confidential




'a Applications of Nonlinear Processes

Hyper-parametric oscillations in fluorite resonators

Transition diagram

DEwaves

FSR

A
N

]
|
|
1

Wy @

3 -2 , my+Q2
©p-2QsR 07> =FSR 0 0T32FSR 09 +2Qrsr

Q =2x10" at A =1310nm Optical spectrum
Selection rules
_ a, a,
FWM: TE-TE | |
SRS: TE-TM
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@ Hyper-parametric oscillations in fluorite

v resonators
10F
laser 50/50 D2 - '15_' 20}
\ MW % 20 L 30y
T signal ag; 40}
I . i 8 25| O g6 8566 B.568
Coupllng_—h DC i g - | | I
ID|Ck prism signali % 30k
; | :
| =

; CaF; resonator 35T H l |
’ _40 L | | 1 1 |

8.50 8.55 8.60 8.65
Q =2x10" at 2 =1310nm Frequency, GHz
T Hamiltonian:
|
a
Dol 1% | H =-hg (b_*bj aa+a‘'a‘bb )
) S 2 O
T _____________ T FSR _ a)o C()+ g — nz h(()OC A.A.Savchenkov et al.,
a)O  QO_ | | 0 n. vn Phys. Rev. Lett. 93, art.
\ 0 0 no. 243905 (2004)
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Microwave power, dBm

Microwave beat note observed

Noise floor

OEwaves
-10F 30
-15 | 0l
E L
20 | % Q 4ol
40} -
25 | -50 . : %
8564 8566  8.568 S 50}
(D] L
-30 | >
S .e0f
O
35 | 9 [
il ottt = 70
_4[} L | 1 1 ' 1
8.50 8.55 8.60 8.65 0.0

Frequency, GHz

T°5= Second-order (2Q¢gg) beat note is insignificant

04 06 08
Optical power, mwW

75> Raman scattering is not observed (expected at 322 cm™)

OEwaves Confidential

1.0

A.A.Savchenkov et al.,
Submitted to PRL (2004)
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Phase noise of oscillations

OEwaves
-80 -
1320nm wavelength
-90+ 8.43GHz frequency
Optical power at detector overall - 4.1mwW
. optical power at the oscillator's outlet - 0.9mW
N
L
3
M -110- resonance slope
©
310kHz
-120 -
126dBc
< shot noise
-130 -
UL | L UL | UL | UL |
1 10 100 1000 10000 100000

Frequency, kHz
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@ Analysis

OEwaves

Kerr Hamiltonian:  H = Ho +V, Hy = hwoa'a + hw, bl by +hw bl b_, where

vV = @blblhh +0! ot b b )= 2ng (b bl by b + a*blb@

Self-phase modulation — hg (bl b} aa + atalbib_) Cross-phase modulation

Four-wave mixing

Equations of motion in an open system:

a = —(iwo +i6(T) + Y0 + Yeo)a + ig[a’a + 201 by + 26T b_]a + 2iga'b b + fo + feo,
by = —(iwy +i6(T) + Y4 + Yep )by + ig [2a*a + bib+ + 2b.i‘_b_]b+ +igb! aa + [+ + fet
b = —(iw_ +ik(T) +v- +7e_)b_ +ig[2ala+2bL by + b7 b 10 +igblaa+ f_ + f._

\ 1
Temperature SPM and CPM FWM
tuning

2.0 F, ;
Where {f.) = ;;c;oo e~ and g = WO Ve
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@ Optif:al comb and 25 GHz RF generation
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A. A. Savchenkov et al.,*“Tunable Optical Frequency Comb with a Crystalline Whispering Gallery
Mode Resonator,” Phys. Rev. Lett. 101, 093902 (2008).
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Optical comb at 13.8 GHz

OEwaves
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Pump laser 1-20 50|
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Wavelength, nm

I. S. Grudinin, N. Yu, and L. Maleki, Opt. Lett. 34, 878-880 (2009)
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@ Stimulated Raman Scattering
et & nonlinear decay

9 Typical ringdown
Nd:YAG Modulator Lens T,=6.5 s, Q,=9.3x10 1 Cr)]/;)racterisgcs of the
laser - . VD = 1F T,726.4 us, Q,=3.7x10° |  fluorite WGM
© ) E [ resonator. The solid line
e o g corresponds to the
(A) g experimental
Multimode 5 observation, and the
Single mode pump waveguide £ dotted line — to the
fiber =~ _— © theoretical simulation.
Stokes  Collimating
lens 01}
M 1 M 1 M 1 M
®) 0 10 20 30 40
Time, us
The scheme of the experimental setup. (A) The frequency of a
continuous wave Nd: YAG laser was slowly swept across the free 10 0.5l The spectrum of light exiting the
spectral range of the resonator. When coupling of the light to a 08 Raman-active _
whispering gallery mode exceeded 30 % the light was abruptly | 0.10f WGM resonator. The inset
switched off with an electrooptic modulator triggered by an % sl 0.08 shows the structure of the Stokes
oscilloscope. In this configuration critical coupling (all light is 2 | line. The wavelength difference
entering the resonator) corresponds to zero signal on the = el 0.00 —1 L. —sne. DEtween the peaks shown in the
photodiode, while zero coupling corresponds to the maximum “ 1.376 1.377,1.378 1.379 1.380 inset corresponds to the free
signal on the photodiode. (B) The light exiting the resonator was 02t / spectral range of the resonator.
collimated and geometrically separated from the Stokes light. i l/
0.0 A —

132 134 136 138 140 142 144
Wavelength, nm

A. A. Savchenkov, et al Opt. Lett. 32, 497-499 (2007).
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@ Ultra-low threshold multi-order SRS

OEwaves
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I. S. Grudinin and L. Maleki, Opt. Lett. 32, 166-168 (2007)
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The lowest possible SRS threshold

1 I I I E z 10" R [ 1
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A)SRS threshold for a 1 mm ideal-surface cavity made with
an ideal CaF,.

B) Low temperature SRS threshold for a 1 mm ideal cavity
made with CaF, in terms of photon number.

C) Theoretically evaluated wavelength dependence of the

Raman gain in CaF,.
|. Grudinin, A. B. Matsko, and L. Maleki,

Opt. Express 15, 3390 (2007).
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Stimulated Brillouin Scattering
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1064.3

v, and v, are resonant with
cavity WG modes, v,
corresponds to 17.7GHz
phonons.

-20

Pump and SBS lines for fluorite cavity. The pump power was 30}
50uW. The two Stokes lines have frequencies red-shifted by 17.7
GHz (weak backward Stokes is seen because of the residual
Rayleigh scattering) and by ~35 GHz (strong Stokes line created by
the backward Stokes). The width of each line is limited by the OSA
resolution of 0.012 nm.
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/

1064.4152 nm
-54.257 dBm

1064.3 1064.4 1064.5 1064.6
Wavelength, nm

I. S. Grudinin et al., Phys. Rev. Lett. 102, 043902 (2009).
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@ Summary

OEwaves

Very high Q factor
+ Low thresholds of

nonlinear effects

Small mode volume

Very high Q-factor and small
volume significantly reduce the
threshold for various nonlinear
optical processes in crystalline
WGM disk resonators using low
power CW laser excitation. This
helps the study of nonlinear
phenomena in crystalline material
and results in development of
novel optical and microwave
photonic devices.
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