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What are WGM resonators

• Whispering Gallery Modes are electromagnetic 
resonances that occur in circularly symmetric dielectrics, 
and trap light in a circling orbit via  total internal reflection  

• They can be produced in a variety of shapes
• They can be produced in a variety of sizes (10’s of mm to 

µm)
• They can be fabricated from a variety of materials
• They can be made with various fabrication processes

5OEwaves Confidential



Features of WGM Resonators

• Ultra-high Q allows long optical delays (ns to ms range)
• Ultra-narrow spectral linewidth makes them ideal filters

– Photonic microwave filters with microwave signals carried as 
sidebands on an optical carrier --- any microwave frequency can 
be supported

– Multi-resonator structures with high rejection band (~ 100 dB)
– Optical filters for signal processing, spectroscopy,  laser 

stabilization, …
• Resonators made using materials with electooptic effect can lead to

– Tunable filters (optical and microwave) with > 40 GHz tunablity
– Highly efficient modulators 
– Optical memory using photorefractivity
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Applications

• Linear regime
– Cavity QED 
– “Artificial” atoms and molecules
– Spectroscopy and materials studies
– Filters (fixed and tunable; microwave and optical)
– Modulators 
– Delays
– Slow light (multi-resonator structures)

• Nonlinear regime
– Lasers (including Raman lasers) and THz sources
– OPO
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Whispering Gallery Modes for  Spherical 
Resonators
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• Extremely high Q (> 1011 has been demonstrated at JPL, finesse>107)
– Long delays (micro seconds)
– Narrow optical/phtonic filters
– Reference resonator for laser stabilization

• Small mode volumes for exploring nonlinear effects
– Second harmonic generation with great efficiency 
– Efficient parametric processes (four-wave mixing, up/down conversion)
– Entangled photon source

• Crystalline material with electooptic effects
– Frequency tunability
– Highly efficient modulators 
– Optical memory using photorefractivity

• Support wide wavelength range (from THz to UV)
– Unique feature, very different from FP cavity

• Small sizes: ranging from 10’s of micron to a few mm
– Compact
– Easier for mechanical and thermal stabilization

Crystalline WGM resonator
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Types of Whispering Gallery Mode 
Resonators

Silicon microdisk, Q~5 x 105

O.Painter et al. App. Phys.Let. 
Vol 85 No 17, 25 October 2004

Fused silica microtoroid q~1 x 108

K. Vahala et al., Nature, vol 421, 27 
February 2003 p. 925. 

Crystalline disk Q~3ex1011

L. Maleki et al, Physical Review A 

70, 051804(R) 2004.

Solid H2, Q>109

K.Hakuta et al. 
Opt.Lett.,27 No 6 
March 15 2002

silica microsphere 
Q=8x109Toroidal resonator fabricated by 

placing a melting sphere between 

two fibers

Micro-ring resonators.

Q ~ 104 to 107.

R< 100 µm
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New crystalline ultra-high Q microcavities
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Non-spherical Structures

l
m

n

Elliptical Resonators
Disk Resonators

Toroidal Resonators

“Rim” Resonators
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Coupling Schemes
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Coupling with Low Insertion Loss

     

   

 
 

 

16.52 MHz

 
With prism coupling and elliptical resonator
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Optical Loss Mechanisms

• Linear Loss
– Radiative :
– Intrinsic material loss:
– Surface loss:                      , σ and B are surface 

inhmogeneity parameters.

• Nonlinear Loss
– SRS, FWM, Parametric processes

 

α radiative = Ae− l

 

Qmaterial =
2πl

αmateialλ

 

Qsurface =
λ2R

πσ 2B
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−1

16OEwaves Confidential



1000 2000 3000 4000 5000107

108

109

1010

1011

1012

1013

1014

LiNbO3

CaF2Silica

Al2O3

 

 

Q 
fa

cto
r

Wavelength, nm

For crystalline 
resonators, linewidth is 
ultimately determined by 
the material absorption
α:

( ) 1
0

12 −− = cn αγ

αλ
πnQ 2

==>

E.D.Palik, “Handbook on optical 
constants of solids”, Academic, NY, 1998

For

Calculated values for achievable Q’s

17OEwaves Confidential



Typical WGM spectra
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Response of the CaF2 resonator above the threshold
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Record Q

0.0 0.1 0.2 0.3 0.4

0.2

0.3

0.4
0.5
0.6
0.7
0.8
0.91

0.0 0.2 0.4
-0.004
-0.002
0.000
0.002

τ2=550±300 µs
τ1=130±10 µsR

el
at

iv
e 

am
pl

itu
de

Time (ms)

 

 

Am
pl

itu
de

 (a
. u

.

Time (ms)

Equivalent Q ~ 3 x 1011; ∆f = 660 Hz!
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22

Measured Qs

775nm 1064nm 1319nm 1550nm

α-Al2O3 8x107 1.5x109

Quartz 5x109

SLN 7x107 8x107 2x108 6x108

SLT 7x107 2x108 2x109

Fused Silica 8x109

MgF2 >1010

CaF2 >6x1010 >6x1010 >4x1010 3x1011
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Important Resonator Parameters

Q V

Cavity field build-up 
factor and linewidth

Small size and optical 
energy density

V
Qn

Figure of merit for nonlinear processes:

SRS and FWM: n=2Purcell’s factor: n=1 Frequency doubling: n=3

E.g. V = π 1 mm   100 µm   10 µmx xx

[V.S. Ilchenko et al., 
JOSA B 20, 1304 (2003)]
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Frequency spectrum and mode 
volume can be engineered  by 
design of the resonator profile
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Single mode WGM resonators
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More on single mode WGM resonators: 
true single mode spectrum
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White light WGM resonators
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Novel configuration of whispering 
gallery mode resonators

(a) After 
diamond 
turning  

(b) After proper 
tune-up

STM picture of a 
single mode 
resonator being 
a “rim” over a 
multimode wave 
guide









+=

0
0

)(21
R

zLεε

29OEwaves Confidential



Delay line with coupled resonators

Band structure

Field 
distribution
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• “Slow light” and SCISSOR solitons
J. Heebner and R. Boyd, JOSA B 19, 722 (2002) and
J. Mod.Opt. 49, 2629 (2002).
• Coupled cavities for enhancing cross-phase 

modulation in EIT
T. Opatrny and D. Welch, Phys. Rev. A 64, 023805 (2001)
• Sharp asymmetric line shapes in side coupled 

waveguide-cavity systems
S. Fan, Appl. Phys. Lett. 80, 908 (2002). 
• Storing light all optically
M. Yanik and S. Fan, quant-ph/0312027 (2003).

Coupled resonator systems
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An analogy with EIT in quantum systems: 
interference of decays
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“EIT” in a system of two coupled 
resonators
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WGM Filters

• WGM filters are a powerful new tool for photonic 
processing of RF signals and enable new capabilities

• WGM tunable filters offer wide tunability range with sub-
microsecond tuning speed

• OEwaves has demonstrated single and multi-pole filters 
with tunability exceeding 12 GHz; fast tuning speed has 
been demonstrated with measurement of waveform
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Photonic filters

Photonic 
Filter

Microwave signal
to be filtered

Filtered
Microwave
signal

Optical carrier

f f f+MW f f f+mw
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Lithium Niobate Whispering Gallery Mode 
Resonators in optical frequency domain

Photograph of 1 mm size WGM resonator disk Optical coupling scheme for the disk resonator

• Large quality factor 
• Large electro-optical tuning range: 20 

GHz per 150 V
• Insertion loss: 2-7 dB
• Small size: 0.1-12 mm

nmatQ 1550108 8 =×= λ
nmatQ 1310102 8 =×= λ

nmatQ 1064108 7 =×= λ

nmatQ 780107 7 =×= λ

Features:
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Tri-pole tunable filter prototype

3-pole tunable filter

Characteristic third order filter function and 12 GHz tuning
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Single mode “Vernier”
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Tri-Pole Filter Architecture of 
AOSP  Phase II 

DFB Modulator PD

LN Resonators

Tuning Control

RFout

RFin

LN Control Crct

Alt. Tuning 
Control
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Orthogonal Flexture-based Mechanical 
Design  of Six-pole Optical Filter (AOSP)

- Independent mech. trimming of all couplings
- Improved linearity and stability
- Tap coupler/PD at third resonator for alignment
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45

Microwave Resonator

Lithium Niobate 
Resonator

First High Performance WGM 
Modulator Fabricated With 
Lithium Niobate

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko,
and L. Maleki, JOSA B, 20, 333 (2003).

Laser PD

WGM based EOM
The carrier and sidebands have the same polarization

Generates mostly phase modulated light so 
the RF return is relatively low. 



June 28, 2007

Typical  sensitivity achievable in linear 
modulator - saturation at -15dBm RF power 
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Characteristics of WGMR Modulators

• Narrow Bandwidth (< 20) MHz
• Low RF Saturation power
• Low optical power handling capability

Ideal for applications such as in oscillators (OEO) and narrow-
band receivers--- BUT

Limited for other applications
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WGMR Modulator as a Receiver

Empty Base

First High Performance WGM 
Modulator Fabricated With 

Lithium Niobate
V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko,

and L. Maleki, JOSA B, 20, 333 (2003).

Highly Effective Modulation
Using Electro-Optic Effect
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SSB Modulator

Typical suppression of the sidemode is ~ 30 dB
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50

WGM SSB versus conventional WGM 
EOM
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WGM Based SSB EOM

A. A. Savchenkov, W. Liang, A. B. Matsko, 
V. S. Ilchenko, D. Seidel, and L. Maleki, 
"Tunable optical single-sideband modulator 
with complete sideband suppression," Opt. 
Lett. 34, 1300-1302 (2009)

RF

DC
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Coupling between TE and TM modes 
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SSR measurements

Optical carrier
sideband

No second sideband at -70dBc level
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SSR is better than -70dBc

Second sideband level determines crosstalk between frequency channels



SSB RF Return and Photonic Loss

54

Maximum RF return = +9dBm
It exactly corresponds to SSB equation: PRF=Pcarrier+Psideband+G,where 
Pcarrier=+13dBm, Psideband=+13dBm 

G=-17.4dB

dGRRG 4.1,5 0,8 5.0;
2 0 0 0

l o g1 0
2

−==== ρρ

Lowest Photonic LossBest RF Return

Saturation power 
+7 dBm

RF input  power 
+20 dBm
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SSB Tunability
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SSB Modulator Characteristics

• Higher RF saturation (but still lower than 10 mW)
• Larger bandwidth (100 MHz to 1 GHz possible)
• Very large RF return (nearly optimal power in 

sideband)
• Center frequency widely tunable (1-40 GHz possible)

A new class of optical modulator 
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WGM Based Tunable OEO

57

Laser PD

Amp

φ

Performance Criteria:

Resonator Q

Fast Photo-detector

Amplifier flicker noise

Resonator Q

Photo-detector efficiency and power

Amplifier flicker noise
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Transition to Products
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0ω

−ω

+ω

0ω
ΩFSR

Optical spectrumTransition diagram

0ω +ω
−ω

Hyper-parametric oscillations
based on FWM in a fluorite resonator

A.A. Savchenkov et al., 
PRL 93, 243905 (2004) & Optics 
Express 16, 4130 (2008) 

Currently we have 
-125 dBc at 100 kHz 
and -135 dBc noise floor.
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The reverse of the frequency doubling is parametric generation of 
photon pairs (sub-threshold) or of squeezed vacuum (above-threshold).

The OPO threshold in our case is

Which can be as low as 1.5 pW.
(The state of the art is 0.5 mW)

Hyperparametric Oscillation
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Hyper-parametric oscillations in fluorite resonators

nmatQ 1310102 10 =×= λ

Selection rules

FWM: TE-TE

SRS: TE-TM

0ω
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Optical spectrum

Transition diagram
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ω0ω0-ΩFSR ω0+ΩFSRω0-2ΩFSR ω0+2ΩFSR

Applications of Nonlinear Processes
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Hyper-parametric oscillations in fluorite 
resonators

A.A.Savchenkov et al., 
Phys. Rev. Lett. 93, art. 
no. 243905 (2004)

nmatQ 1310102 10 =×= λ
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Microwave beat note observed
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A.A.Savchenkov et al., 
Submitted to PRL (2004)

Second-order (2ΩFSR) beat note is insignificant

Raman scattering is not observed (expected at 322 cm-1)
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June 28, 2007

Phase noise of oscillations
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Analysis
Kerr Hamiltonian:                                                                                                 where

Self-phase modulation Cross-phase modulation

Four-wave mixing

Equations of motion in an open system:

Where                                         and

Temperature
tuning

SPM and CPM FWM
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Optical comb and 25 GHz RF generation

A. A. Savchenkov et al.,“Tunable Optical Frequency Comb with a Crystalline Whispering Gallery 
Mode Resonator,” Phys. Rev. Lett. 101, 093902 (2008).
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Optical comb at 13.8 GHz

I. S. Grudinin, N. Yu, and L. Maleki, Opt. Lett. 34, 878-880 (2009)

OEwaves Confidential



The scheme of the experimental setup. (A) The frequency of a 
continuous wave Nd:YAG laser was slowly swept across the free 
spectral range of the resonator. When coupling of the light to a 
whispering gallery mode exceeded 30 % the light was abruptly 
switched off with an electrooptic modulator triggered by an 
oscilloscope. In this configuration critical coupling (all light is 
entering the resonator) corresponds to zero signal on the 
photodiode, while zero coupling corresponds to the maximum 
signal on the photodiode. (B) The light exiting the resonator was 
collimated and geometrically separated from the Stokes light.

Typical ringdown 
characteristics of the 
fluorite WGM
resonator. The solid line 
corresponds to the 
experimental 
observation, and the 
dotted line – to the 
theoretical simulation.

The spectrum of light exiting the 
Raman-active
WGM resonator. The inset 
shows the structure of the Stokes 
line. The wavelength difference 
between the peaks shown in the 
inset corresponds to the free 
spectral range of the resonator.

Stimulated Raman Scattering
& nonlinear decay

A. A. Savchenkov, et al Opt. Lett. 32, 497-499 (2007). 
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71

I. S. Grudinin and L. Maleki, Opt. Lett. 32, 166-168 (2007)

Ultra-low threshold multi-order SRS
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A)SRS threshold for a 1 mm ideal-surface cavity made with 
an ideal CaF2.

B) Low temperature SRS threshold for a 1 mm ideal cavity 
made with CaF2 in terms of photon number. 

C) Theoretically evaluated wavelength dependence of the 
Raman gain in CaF2.

I. Grudinin, A. B. Matsko, and L. Maleki,
Opt. Express 15, 3390 (2007).

The lowest possible SRS threshold
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Stimulated Brillouin Scattering

I. S. Grudinin et al., Phys. Rev. Lett. 102, 043902 (2009).

ν1 and ν2 are resonant with 
cavity WG modes, ν3
corresponds to  17.7GHz 
phonons.

Pump and SBS lines for fluorite cavity. The pump power was 
50µW. The two Stokes lines have frequencies red-shifted by 17.7 
GHz (weak backward Stokes is seen because of the residual 
Rayleigh scattering) and by ~35 GHz (strong Stokes line created by 
the backward Stokes). The width of each line is limited by the OSA 
resolution of 0.012 nm.
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Very high Q-factor and small 
volume significantly reduce the 
threshold for various nonlinear 
optical processes in crystalline 
WGM disk resonators using low 
power CW laser excitation.  This 
helps the study of nonlinear 
phenomena in crystalline material 
and results in development of 
novel optical and microwave 
photonic devices.

Summary

Very high Q factor

Small mode volume
+ Low thresholds of 

nonlinear effects
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